Tag: Software

Continuous Improvement – One on One Tweaks

Continuous Improvement - One on One Tweaks

Continuous Improvement – Baby Steps!

Our development team at Magnet Forensics focuses a lot on continuous improvement. It’s one of the things baked into a retrospective often performed in agile software shops. It’s all about acknowledging that no system or process is going to be perfect and that as your landscape changes, a lot of other things will too.

The concept of continuous improvement isn’t limited to just the software we make or the processes we put in place for doing so. You can apply it to anything that’s repeated over time where you can measure positive and negative changes. I figured it was time to apply it to my leadership practices.

The One on One

I lead a team of software developers at Magnet, but I’m not the boss of any of them. They’re all equally my peers and we’re all working toward a common goal. One of my responsibilities is to meet with my team regularly to touch base with them. What are things they’ve been working on? What concerns do they have with the current state of things? What’s going well for them? What sort of goals are they setting?

The one on ones that we have setup are just another version of continuous improvement. It’s up to me to help empower the team to drive that continuous improvement, so I need to facilitate them wherever I can. Often this isn’t a case of “okay, I’ll do that for you” but a “yes, I encourage you to proceed with that” type of scenario. The next time we meet up, I check in to see if they were able to make headway with the goals they had set up and we try to change things up if they’ve hit roadblocks.

No Change, No Improvement

I had been taking the same approach to one-on-ones for a while. I decided it was time for a change. If it didn’t work, it’s okay… I could always try something else. I had a good baseline to measure from, so I felt comfortable trying something different.

One on ones often consisted of my team members handing me a sheet of past actions, concerns, and status of goals before we’d jump into a quick 20 minute meeting together. I’d go over the sheet with them and we’d add in any missing areas and solidify goals for next time. But I wanted a change here. How helpful can I be if I get this sheet as we go into the room together?

I started asking to get these sheets ahead of time and started paraphrasing the whole sheet into a few bullet points. A small and simple change. But what impact did this have?

Most one on ones went from maxing out 20 minutes to only taking around 10 minutes to cover the most important topics. Additionally, it felt like we could really deep dive on topics because I was prepared with some sort of background questions or information to help progress through roadblocks. Myself and my team member could blast through the important pieces of information and then at the end, if I’d check to make sure there’s nothing we’d missed going over. If I had accidentally omitted something, we’d have almost another 10 minutes to at least start discussing it.

Trade Off?

I have an engineering background, so for me it’s all about pros and cons. What was the trade-off for doing this?

The first thing is that initially it seemed like I was asking for the sheets super early. Maybe it still feels like I’m asking for them early. I try to get them by the weekend before the week where I start scheduling one on ones, so sometimes it feels like people had less than a month to fill them out. Is it a problem really? Maybe not. Maybe it just means there’s less stuff to try and cram into there. I think the benefit of being able to go into the meeting with more information on my end can make it more productive.

The second thing is that since I paraphrase the sheet, I might miss something that my team member wanted to go over. However, because the time is used so much more effectively, we’re often able to cover anything  that was missed with time to spare. I think there’s enough trust in the team for them to know that if I miss something that it’s not because I wanted to dodge a question or topic.

I think the positive changes this brought about have certainly outweighed the drawbacks. I think I’ll make this a permanent part of my one on one setup… Until continuous improvement suggests I should try something new!


Refactoring For Interfaces: An Adventure From The Trenches

puzzle

Refactoring: Some Background

If you’re a seasoned programmer you know all about refactoring. If you’re relatively new to programming, you probably have heard of refactoring but don’t have that much experience actually doing it. After all, it’s easier to just rewrite things from scratch instead of trying to make a huge design change part way through, right? In any mature software project, it’s often the case where you’ll get to a point where your code base in its current state cannot properly sustain large changes going forward. It’s not really anyone’s fault–it’s totally natural. It’s impossible to plan absolutely everything that comes up, so it’s probable that at some point at least part of your software project will face refactoring.

In my real life example, I was tasked with refactoring a software project that has a single owner. I’m close with the owner and they’re a very technical person, but they’re also not a programmer. Because I’m not physically near the owner (and I have a full-time job, among other things I’m doing) it’s often difficult to debug any problems that come up. The owner can’t simply open an editor and get down to the code to fix things up.

So there was an obvious solution which I avoided in the first place… Unit tests. Duh. I need unit tests. So that’s an easy solution right? I’ll bust out my favourite testing framework (I’m a fan of xUnit) and start getting some solid code coverage. Well… in an ideal world, like every programming article is ever written, this would have been the case. But that wasn’t the case. My software project does a lot of direct HTTP/FTP requests and interacts with particular hardware on the machine. How awesome is writing a unit test that contacts an HTTP server? Not very awesome.

What was I to do? I need to be able to write unit tests so that I can validate my software before putting it in my customer’s hands, but I can’t test it with unit tests because I don’t have the hardware!

Refactoring for Interfaces

Okay, so the first step in my master plan is to refactor for interfaces. What do I mean by that? Well, I have a lot of code that will call out and make HTTP requests and it has a specific dependency on System.Net.WebRequest. The same thing holds true for my FTP requests I want to make. Because I have that dependency within my classes, it means I have no choice but to call out to the network and go do these things.

I could design it a different way though. What if I abstracted the web requests away so that I didn’t actually have to call that class directly? What if I could have a reference to some instance that met some API that would just do that stuff for me? I mean, my class knows all about it’s on particular job, but it truthfully doesn’t know the first thing about calling out to the Internet to go post some HTTP requests. This means if someone else is responsible for providing me with a mechanism for giving me the ability to post HTTP requests, this other entity could also fool me and not actually send out HTTP requests at all! That sounds like exactly what my test framework would want to do.

My first step was to look at the properties and methods I was using on the WebRequest class. What was shared between the HTTP and FTP requests that I was creating? The few things I had to consider were:

  • Some sort of Send() method to actually send the request
  • A URI to identify where the request is being sent
  • A timeout property

I then created an interface for a web request that had these properties/methods accessible and created some wrapper classes that implemented this interface but encapsulated the functionality of the underlying web requests. The next step was creating a class and interface for a “factory” that could create these requests. This is because my code that needs to make HTTP/FTP requests only knows it needs to make those requests–It doesn’t have any knowledge on how to actually create one.

With my interfaces for my requests and my factory that creates them, I was able to move onto the next step.

Create Mocks for the Interfaces

Now that I had my classes leveraging interfaces instead of concrete classes internally, I could mock the inner-workings of my classes. This would provide two major benefits:

  • I could create tests that wouldn’t have to actually go out to the Internet/network.
  • I could create instrumented mocks that would let me test whether certain web requests were being made.

I started off my writing up some unit tests. I tried to get as much code coverage as I could by doing simple tests (i.e. create an object, check default values, call a method and check a result, etc…). Once I had exhausted a lot of the simple stuff, I targeted the other areas that I wasn’t hitting. I mean, how was my coded test supposed to test my method that does an HTTP request and an FTP of a file under the hood? Mocks.

So this is where you probably draw the line between your integration tests or unit tests and get all pedantic about it. But I don’t care how you want to separate it: I need coded tests that cover a section of my class so that I can ensure it behaves as I expect. But if I’m mocking my dependencies, how do I know my class is actually doing what I expect?

Instrument your mocks! This was totally cool for me to play around with for the first time. I had to create dummy FTP/HTTP requests that met the interface my class under test expected. Pretty easy. But I could actually assert what requests my class under test was actually trying to send out! This meant that if my method was supposed to try and hit a certain URL, I could assert that easily by instrumenting my mocked instance to check just that. Was it supposed to FTP a certain set of bytes? No problem. Use my mocked instance to assert those bytes are actually the ones my class under test is trying to send.

Wrap Up

This was just a general post, and I didn’t put up any code to go along with it. Sorry. I really just wanted to cover my experience with refactoring, interfaces, mocking, and code coverage because it was a great learning for me.

To recap on what I said in this post:

  • Identify the parts you want to mock. These are the things your class or method probably isn’t responsible for creating directly. Going out to the network? Accessing the disk? Accessing the environment your test is running under? Creating complex concrete classes because they hook into some other system for you? Great candidates for this.
  • Create interfaces by looking at the API you’re accessing. You know what classes you want to mock, so look how you’re using the API. If you need to access a few properties and methods, then make that part of your interface. If you see commonality between a few similar things, you might be able to create a single interface to handle all of the scenarios.
  • Inject factories that can create instances for you. These factories know how to create the concrete classes that meet your interfaces. In a real situation, they can create the classes you expect. In a test environment, they can create your mocks.
  • Write coded tests with your mocks! The last part is the most fun. You can finally inject some mocked classes into your classes/methods under test and then instrument them to ensure your code under test is accessing them in the way you expect. Run some code coverage tools after to prove you’re doing a good job.

I hope my experiences down this path are able to help you out!


IronPython: A Quick WinForms Introduction

IronPython: A Quick WinForms Introduction

Background

A few months ago I wrote up an article on using PyTools, Visual Studio, and Python all together. I received some much appreciated positive feedback for it, but really for me it was about exploring. I had dabbled with Python a few years back and hadn’t really touched it much since. I spend the bulk of my programming time in Visual Studio, so it was a great opportunity to try and bridge that gap.

I had an individual contact me via the Dev Leader Facebook group that had come across my original article. However, he wanted a little bit more out of it. Since I had my initial exploring out of the way, I figured it was probably worth trying to come up with a semi-useful example. I could get two birds with one stone here–Help out at least one person, and get another blog post written up!

The request was really around taking the output from a Python script and being able to display it in a WinForm application. I took it one step further and created an application that either lets you choose a Python script from your file system or let you type in a basic script directly on the form. There isn’t any fancy editor tools on the form, but someone could easily take this application and extend it into a little Python editor if they wanted to.

Leveraging IronPython

In my original PyTools article, I mention how to get IronPython installed into your Visual Studio project. In Visual Studio 2012 (and likely a very similar approach for other versions of Visual Studio), the following steps should get you setup with IronPython in your project:

  • Open an existing project or start a new one.
  • Make sure your project is set to be at least .NET 4.0
    • Right click on the project within your solution explorer and select “Properties”
    • Switch to the “Application” tab.
    • Under “Target framework”, select  “.NET Framework 4.0”.
  • Right click on the project within your solution explorer and select “Manage NuGet Packages…”.
  • In the “Search Online” text field on the top right, search for “IronPython”.
  • Select “IronPython” from within the search results and press the “Install” button.
  • Follow the instructions, and you should be good to go!

Now that we have IronPython in a project, we’ll need to actually look at some code that gets us up and running with executing Python code from within C#. If you followed my original post, you’ll know that it’s pretty simple:


var py = Python.CreateEngine();
py.Execute("your python code here");

And there you have it. If it seems easy, that’s because it is. But what about the part about getting the output from Python? What if I wanted to print something to the console in Python and see what it spits out? After all, that’s the goal I was setting out to accomplish with this article. If you try the following code, you’ll notice you see a whole lot of nothing:


var py = Python.CreateEngine();
py.Execute("print('I wish I could see this in the console...')");

What gives? How are we supposed to see the output from IronPython? Well, it all has to do with setting the output Stream of the IronPython engine. It has a nice little method for letting you specify what stream to output to:


var py = Python.CreateEngine();
py.Runtime.IO.SetOutput(yourStreamInstanceHere);

In this example, I wanted to output the stream directly into my own TextBox. To accomplish this, I wrote up my own little stream wrapper that takes in a TextBox and appends the stream contents directly to the Text property of the TextBox. Here’s what my stream implementation looks like:


private class ScriptOutputStream : Stream
{
  #region Fields
  private readonly TextBox _control;
  #endregion

  #region Constructors
  public ScriptOutputStream(TextBox control)
  {
    _control = control;
  }
  #endregion

  #region Properties
  public override bool CanRead
  {
    get { return false; }
  }

  public override bool CanSeek
  {
    get { return false; }
  }

  public override bool CanWrite
  {
    get { return true; }
  }

  public override long Length
  {
    get { throw new NotImplementedException(); }
  }

  public override long Position
  {
    get { throw new NotImplementedException(); }
    set { throw new NotImplementedException(); }
  }
  #endregion

  #region Exposed Members
  public override void Flush()
  {
  }

  public override int Read(byte[] buffer, int offset, int count)
  {
    throw new NotImplementedException();
  }

  public override long Seek(long offset, SeekOrigin origin)
  {
    throw new NotImplementedException();
  }

  public override void SetLength(long value)
  {
    throw new NotImplementedException();
  }

  public override void Write(byte[] buffer, int offset, int count)
  {
    _control.Text += Encoding.GetEncoding(1252).GetString(buffer, offset, count);
  }
  #endregion
}

Now while this isn’t pretty, it serves one purpose: Use the stream API to allow binary data to be appended to a TextBox. The magic is happening inside of the Write() method where I take the binary data that IronPython will be providing to us, convert it to a string via code page 1252 encoding, and then append that directly to the control’s Text property. In order to use this, we just need to set it up on our IronPython engine:


var py = Python.CreateEngine();
py.Runtime.IO.SetOutput(new ScriptOutputStream(txtYourTextBoxInstance), Encoding.GetEncoding(1252));

Now, any time you output to the console in IronPython you’ll get your console output directly in your TextBox! The ScriptOutputStream implementation and calling SetOutput() are really the key points in getting output from IronPython.

The Application at a Glance

I wanted to take this example a little bit further than the initial request. I didn’t just want to show that I could take the IronPython output and put it in a form control, I wanted to demonstrate being able to pick the Python code to run too!

Firstly, you’re able to browse for Python scripts using the default radio button. Just type in the path to your script or use the browse button:

IronPython - Run script from file

Enter a path or browse for your script. Press “Run Script” to see the output of your script in the bottom TextBox.

Next, press “Run Script”, and you’re off! This simply uses a StreamReader to get the contents of the file and then once in the contents are stored in a string, they are passed into the IronPython engine’s Execute() method. As you might have guessed, my “helloworld.py” script just contains a single line that prints out “Hello, World!”. Nothing too fancy in there!

Let’s try running a script that we type into the input TextBox instead. There’s some basic error handling so if your script doesn’t execute, I’ll print out the exception and the stack trace to go along with it. In this case, I tried executing a Python script that was just “asd”. Clearly, this is invalid and shouldn’t run:

python_error_asd

Python interpreted the input we provided but, as expected, could not find a definition for “asd”.

That should be along the lines of what we expected–The script isn’t valid, and IronPython tells us why. What other errors can we see? Well, the IronPython engine will also let you know if you have bad syntax:

python_error_bad_syntax

Python interpreted the script, but found a syntax error in our silly input.

Finally, if we want to see some working Python we can do some console printing. Let’s try a little HelloWorld-esque script:

python_pass_hello_world

Python interpreted our simple Hello World script.

Summary

This sample was pretty short but that just demonstrates how easy it is! Passing in a script from C# into the IronPython is straight forward, but getting the output from IronPython is a bit trickier. If you’re not familiar with the different parts of the IronPython engine, it can be difficult to find the things you need to get this working. With a simple custom stream implementation we’re able to get the output from IronPython easily. All we had to do was create our own stream implementation and pass it into the SetOutput() method that’s available via the IronPython engine class. Now we can easily hook the output of our Python scripts!

As always, all of the source for you to try this out is available online:

Some next steps might include:

  • Creating your own Python IDE. Figure out some nice text-editing features and you can run Python scripts right from your application.
  • Creating a test script dashboard. Do you write test scripts for other applications in Python? Why not have a dashboard that can report on the results of these scripts?
  • Add in some game scripting! Sure, you could have done this with IronPython alone, but maybe now you can skip the WinForms part of this and just make your own stream wrapper for getting script output. Cook up some simple scripts in a scripting engine and voila! You can easily pass information into Python and get the results back out.

Let me know in the comments if you come up with some other cool ideas for how you can leverage this!


Be a Better Programmer – Weekly Article Dump

Be a Better Programmer - Weekly Article Dump (Image by http://www.sxc.hu/)

Be a Better Programmer

It’s a new year and that means it’s all about resolutions, right? Well, I’m not a huge fan of keeping around a resolution that needs to wait for a new year, but I am a fan of reflecting on your goals and your skills. If you’re a programmer like me, then maybe this will be a great starting point. In my weekly article dumps I usually would just provide a couple of comments on a link like this, but I felt I should dive in a little bit more. You can find the original article by Amy Jollymore over here. Please have a look! I shared it with the whole dev team at Magnet Forensics because I felt there was a little bit of something for everyone.

Number one on this list, and perhaps the one I’d personally like to focus on more out of this list, is checking your code before blaming others. Blaming other people–in general, not just programming–is an easy way out. When a problem occurs, it’s simple to assume that all of your work is right and that it must be someone else’s fault. But if everyone starts thinking like this, it turns into a nasty blame war. So next time the build breaks or your shiny new feature stops working as expected, don’t go blaming other people. Investigate what the problem is. See what your most recent changes were and if they could have caused the problem. As you start to gain confidence that your changes aren’t responsible for the issue, try sitting down with one or two other people you think might have been around the problem area recently–But don’t go accusing them! Putting your heads together to figure out the problem can speed up the process and might even shed some light on some miscommunication over a design or some assumptions in the code that don’t actually hold true. It’s a lot more embarrassing to blame someone when it’s actually your fault compared to putting in the effort and admitting you might have goofed up. Try it out!

Number two is also a great item. You should never put an end to your learning… especially as an individual in a technology space. There are so many great suggestions listed for this point that there’s no point in me repeating them. Just go read them! An interesting point worth mentioning is using podcasts for learning. This is a great option if you find you’re brain is still spinning when you lay down in bed or if you have a long commute to work (or something else you’re involved in). The author also mentions that you don’t need to be learning programming… What about domain expertise? If you’re writing code for banks, lawyers, or digital forensics… Why  not learn about that too?!

The last point I’ll touch on from the article is number three: don’t be afraid to break things. I love this point. If you’re working on a big piece of software, there are almost certainly areas that seem brittle, scary, or just plain incomprehensible. If your project is still small, it very well get to this point. It doesn’t mean that the code is bad or that you’re working with the worst programmers… It’s just something that happens when you’re continuously trying to build on your software. The real problem occurs when nobody is willing to take the time to go change things. If you have big scary brittle parts of code, then set aside some time, take a deep breath, and go refactor it! It might seem like hell at first, but once you get into it (and especially after it’s done) you’ll feel a million times better. Plus, now your code can continue to be built upon without people running in fear when you mention that section of code. Code can get nasty, but consider using a “tech debt” system or regularly set aside time for refactoring parts of your code base.

Again, the original article is located at: 7 Ways to be a Better Programmer in 2014. Check it out!

Articles

  • How to Manage Dynamic Tensions — and Master the Balancing Act: This was an interesting article on some parts of leadership that often oppose each other. Author Chris Cancialosi does an excellent job in discussing balance between internal and external influences as well as leading and managing. A good take away from this article is at least acknowledging that there are certainly some things to balance. You may want to have the most flexible team, but have you considered if there’s a “too flexible”? Just a bit of perspective that this article might bring to light.
  • A Crash Course In Leadership For 20-Something CEOs: Barry Salzberg‘s article is geared toward young CEOs, but I think that means we can apply the lessons to anyone looking to lead! A few of the points I’d like to mention include being tough on problems and not on people. Your people are the one’s who are going to solve problems and bring great ideas to the table. They’ll invest their time into your organization in order to accomplish great things–so don’t be hard on them. Instead, acknowledge that your problems and challenges are the things you want to crush, and work with your team to make sure you conquer every challenge that gets in the way of your goal. Another point is on taking risks. Never taking risks is a great way to stagnate. You need to learn from your failures, but keep pushing the boundaries. Finally, be ready to adapt. As your organization grows or as the market you’re working within evolves, you need to be ready to adapt and change. You might get lucky and things don’t change all that much over a long period of time, but the odds of that are pretty low. Be ready to adapt so when the time comes, you don’t need to worry about everything falling apart.
  • Leading at Scale with Agility: Brad Smith has a few great points on what leading a team should encompass. First, a team should have a goal that it is trying to achieve. If that team is part of a larger organization, the team’s goal should align with the goal of the entire organization. Secondly, decisions for the team should involve those on the team. It’s easy to sit back and speculate what might be best, but why not involve the people directly affected? Of course, this is more difficult for large teams but maybe that’s an indication your teams would be more effective if they were smaller. Next, empower teams to arrive at solutions on their own. If a plan worked out well, try communicating it to others to try out. Conversely, if the plan had some problems, let others on the team (or other teams) know about the hurdles. Finally, Brad has a point on trust. Trust is arguably one of the most important parts of leading a team. Each team member needs to be able to trust the others. There should be an easy assumption that everyone is operating with best intentions.
  • For Leaders, Today is History: In this article by Steven Thompson, he gives a high-level overview of his focus. Specifically, he focuses on the future and not right now. Steven says the teams he is in charge of are often looking at the problems of “right now” and perhaps a little bit in the future. It would be counter productive for him to try and butt-in to try helping with those problems because he’s so far removed from them. Instead, those individuals have been empowered to focus on those problems. Instead, Steven focuses on the future–the direction of the teams. As a leader, it’s important to try and be thinking at least one step ahead.
  • What If You Had to Write a “User Manual” About Your Leadership Style?: After I read Adam Bryant‘s article, I thought the idea of a leadership “user manual” would be pretty cool. Even if there isn’t a single other individual who would benefit from it, at least it would help reveal to myself some of my leadership quirks. That’s useful on it’s own! I’ll be sure to post up my leadership “user manual” when I have it complete… and I imagine I’ll have to keep updating it over time as my style evolves. It’ll be really interesting to see the evolution of my leadership style! Why not consider doing one for yourself?
  • What Bosses Should Never Ask Employees to Do: Jeff Haden‘s article was a little bit controversial in my opinion–and in the opinion of some of the commenters. I think I get the underlying message behind a lot of what Jeff is saying for each of his points, but as one commenter said, it sounds like a bit of a personal complaint the whole way through. Consider the topic of donating to charities at work. The feel I get after reading that segment is that your organization should not attempt to do fundraising through employees. While I don’t actually think that’s what Jeff is saying, that’s how I feel after reading it. I know that we’ve been able to do several charity events at Magnet, and we’ve always said that they are completely voluntary. I think that’s the crucial part. It’s the holiday season and your budget is a bit tight? How could anyone get mad at you for backing out of a completely optional charity donation? Busy with some personal matters or want to focus on finishing up something at work the day we’re doing a charity event? No big deal, it’s optional. Anyway, the point is that perhaps based on the wording in the article, I felt like some of the messaging will be misinterpreted. I think there are some good points buried in there. Check it out and let me know if you agree or not!

Follow Dev Leader on social media outlets to get these updates through the week. Thanks!


Movember Wrap-up – Weekly Article Dump

Movember Wrap-up - Weekly Article Dump

Movember Wrap-up

At the start of December, it’s time for a lot of us to shave off our glorious Movember badges from our upper lips. This year, MoMagnets did an absolutely amazing job raising money for Movember. At the time of writing, we’re sitting at just under $2400! An incredible effort by Magnet Forensics and all of those that helped with their generous contributions.

My ‘stache didn’t quite get to where I wanted to this year. It was close, but it was another connector-less Movember for me. I was almost able to get some twisting done for some not-so-legitimate connectors. Oh well… Here’s what I ended up rocking for most of the month:

Movember Wrap-up - Nick's Final 'Stache

My final Movember creation: The Anti-Connector.

Matt Chang definitely took the lead for raising the most of all the MoMagnets members at over $700! Mica Sadler is sitting in second at just under $400. That’s nearly half the team’s total between these two beauties. We also had a very gracious contribution from our CEO that I wanted to call out. Thanks so much, Adam!

There’s still a bit of time left before donations are closed for the 2013 Movember season. We have until the 9th to get some final contributions in! If you’re feeling generous, please visit our team page and make a contribution. Every little bit helps, and we greatly appreciate it!

Articles

  • Top 5 Reasons People Love Their Jobs and How You Can Love Yours, Too: Some great points on why people love their jobs. Some of these may be pretty obvious, but it’s important to be reminded about what keeps people engaged. Among the top things: the work culture, the amazing people you get to work with, and autonomy. If you’re trying to create an awesome place to work (or if you’re looking for an awesome place to work) then these are probably things you’ll want to focus on!
  • 5 Things Zapping Your Company’s Productivity: Ilya Pozin always has some interesting articles. This article takes the perspective that some of the fancy perks or awesome processes you have in place may actually be hindering productivity. One common theme that was brought up under two separate points in this article is that sometimes people need a spot where they can work in peace. People like having an fun collaborative culture, but many personality types require some quiet time in order to buckle down.
  • Reduce Your Stress in 2 Minutes a Day: I’m not the type of person that truly believes doing one tiny thing for only a moment every day is going to have an enormous positive impact on your life. However, I do think that if you can take the time to try and do a few little things here and there, that overtime, you’re likely to have more a positive outlook. In this article, Greg McKeown shares a few tips on relaxing and trying to regain some focus. I don’t think it’s anything that’s going to be life-changing, but it never hurts to think about different ways to catch your breath.
  • Building a fast-failure-friendly firm: This was a pretty cool series of slides put together by Eric Tachibana that I thought was worth sharing. There are lot’s of articles on failing and why it’s important–especially for innovating. This series of slides provides a high level perspective on how you can approach failing… the right way!
  • Code Smells – Issue Number 3: This is an article I wrote about Code Smells. This entry talks about the use of exception handlers to guide logical flow in your code and alternatives for when your class hierarchy starts to get too many very light weight classes. As always, I’d love to get your feedback. If you have other code smells, or a different perspective on the ones that I’ve posted, please share them in the comments!
  • 5 Bad Thoughts That Will Throw You Off Track: This short little list is worth a quick read through. There are a ton of things that distract us every day, but the distractions you can easily control are the ones that you cause. Examples? Don’t take on too much at once. Don’t try to make every little thing you do perfect. It’s a quick read, but well worth the reminder!
  • Not Crying Over Old Code: Another programming article for this week. As the article says, the common meme for programming is that your old code is always bad code. However, there should be a point in your programming career where old code isn’t bad, it’s just different than how you might have approached it now. If your always experiencing your old code being bad, then maybe you’re not actually that great at programming yet! Or… maybe you’re just too damn picky.
  • Things I Wish Someone Had Told Me When I Was Learning How to Code: This article by Cecily Carver is something I’ve been hoping to come across for a while now. It’s another programming article–a good read for experienced programmers but incredibly important for newbies to check out. Cecily covers some of the roadblocks you experience early on, like code never (almost never) working the first time, or things you experience throughout your programming career, like always being told of a “better” alternative. I highly recommend you read through this if you dabble in programming, or if you’ve ever considered it.

Please visit our team page for MoMagnets and make a Movember contribution if you’re able to! Remember to follow Dev Leader on social media outlets to get these updates through the week. Thanks!

Nick Cosentino – LinkedIn
Nick Cosentino – Twitter
Dev Leader – Facebook
Dev Leader – Google+
Nick’s CodeProject Articles


Fragments: Creating a Tabbed Android User Interface

Fragments: Creating a Tabbed Android User Interface

Fragments: A Little Background

Update: The actual application is available on the Google Play store.

Once upon a time, Android developers used only two things called activities and views in order to create their user interfaces. If you’re like me and you come from a desktop programming environment, an Activity is sort of like a form or a window. Except it’s more like a controller for one of these classes. With that analogy in place, a view is then similar to a control. It’s the visual part you’re interacting with as a user. I remember the learning curve being pretty steep for me being so stuck in my desktop (C# and WPF) development, but once I came up with these analogies on my own, it seemed pretty obvious. So to make an Android application, one would simply put some views together and chain some activities to show these views. Pretty simple.

Something changed along the way though. It was apparent that the Activity/View paradigm was a bit lacking so something new was added to the mix: The Fragment. Fragments were introduced in Android 3.0 (which is API level 11). Fragments added the flexibility to be able to swap out parts of an activity without having to completely redefine the whole view. This means that having an application on a mobile phone with a small screen can appear differently than when it’s on a large tablet, and as a developer you don’t have to redesign the whole bloody thing. Awesome stuff!

So, to clarify, a fragment is just a part of the activity. By breaking up activities into fragments, you get the modular flexibility of being able to swap in and out components at will. If you’re like me and you took a break from Android when fragments were introduced, then you may have another little learning curve. The goal of this article is to create a tabbed Android user interface using fragments.

For what it’s worth, when I first tried putting together a tabbed UI with fragments, it was a complete mess. I was surfing the net for examples, but I couldn’t find anything that really hit it home for me. Once I had it working, I decided I should redo it and document the process. That’s how this article came to be! Another side note… I’m a C# developer by trade and I haven’t developed with Android/Java within a team. If you don’t like my coding conventions then please try to look past that to get the meat of the article!

As per usual, you can follow along by downloading all of the code ahead of time. Please check out the section at the end of the article and pick whichever option you’d like to get the source!

Setting Up: Getting Your Project Together

I’m going to make a few assumptions here. You should have Eclipse installed with the latest Android Development Tools. There are plenty of examples out there for how to get your environment put together, but I’m not going to cover that here.

You’re going to want to start by making a new Android Application in eclipse. By going to the “File” menu, then the “New” sub menu, then the “Other” sub menu, you should get a dialog letting you pick Android application. You’ll get a wizard that looks like the following (where I’ve filled in the information with what I’ll be using for this entire example):

Tab Fragment Tutorial - New Android Application

The first part of the wizard is setting up your Android project.

The wizard gives you some options for what you want to have it generate for you. In this case, I opted out of having a custom icon (since that’s not really important for this tutorial) and I chose to have it create an activity for me.

Tab Fragment Tutorial - Create Activity

The second step in the wizard lets you choose what to create. I wanted just the activity made.

Our activity is actually going to be pretty light-weight. The bulk of what we’re going to be doing is going to be inside of our fragments. Because of this, we should be totally fine just making our main activity a simple blank activity.

Tab Fragment Tutorial - Create Blank Activity

We won’t have much code in our main activity. Let’s just opt for the blank activity.

The final step in the wizard just wants you to confirm the naming for your generated code.

Tab Fragment Tutorial - Activity Naming

Let’s create our “MainActivity” activity with a layout called “activity_main”. Pretty straight forward.

At this point, we actually have an Android application that we can deploy to a phone or a virtual device. If you’re new to Android programming, I suggest you try it out. It’s pretty exciting to get your first little application running.

The Layouts

The layout XML files in Android provide the hierarchies of views that will get shown in the UI. If you haven’t modified the one that was created by default, it will probably look like this:

Tab Fragment Tutorial - Initial Main Activity Layout XML

The default Main Activity XML will look like this. It’s really just a text view that says “Hello World”.

What does that give us? Well, we get a RelativeLayout view that acts as a container for a TextView. The TextView says “Hello World”. Amazing, right?

Let’s switch up our main activity’s layout a bit. Instead of a RelativeLayout, let’s drop in a linear layout that has a vertical orientation. We’ll blow away the TextView too, and drop in a Fragment. Our fragment will need to point to our custom fragment class (which we haven’t created yet). For now, make the class “com.devleader.tab_fragment_tutorial.TabsFragment”. Later in the example, we’ll create the TabsFragment class and put it within this package. When the application runs, it will load up our custom fragment (specified by the full class name) and place it within our LinearLayout.

The layout XML for the main activity looks like the following:


<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <fragment
 class="com.devleader.tab_fragment_tutorial.TabsFragment"
 android:id="@+id/tabs_fragment"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" />
</LinearLayout>

We’re going to need a layout for our tabs fragment. This is going to be the view portion of the UI that gets dropped in to our main activity. It’s going to be responsible for showing the tabs at the top of the UI and then providing container views for the contents that each tab will want to show.

In order to create this layout, right click on your “layout” folder nested within the “res” folder in the Eclipse IDE. Go to “new”, and then click on the “Other” child menu. Pick “Android XML Layout File” from your list of options. Select “TabHost” as the layout’s root element. Let’s call this file “fragment_tabs.xml”.

The top level component in this layout will be a TabHost. We’ll put our TabWidget in next, which is going to contain the actual tab views, and then a FrameLayout with two nested FrameLayouts inside of it for holding the contents that we want to show for each tab. To clarify, the user will be clicking on views within the TabWidget to pick the tab, and the contents within the tab1 and tab2 FrameLayouts will show the corresponding user interface for each tab.

The layout XML for the tabs fragment looks like the following:


<TabHost
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@android:id/tabhost"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="#EFEFEF">

 <LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <TabWidget
 android:id="@android:id/tabs"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />

 <FrameLayout
 android:id="@android:id/tabcontent"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <FrameLayout
 android:id="@+id/tab1"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="#FFFF00" />

 <FrameLayout
 android:id="@+id/tab2"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="#FF00FF" />

 </FrameLayout>
 </LinearLayout>
</TabHost>

You may have noticed I used some pretty aggressive hard-coded colors in the layout file. I highly advise you switch these to be whatever you want for your application, but when I’m debugging UI layouts I like to use really high contrasting colors. This helps me know exactly where things are (as opposed to having 10 views all with the same background). Maybe I’m a bit crazy, but I find it really helpful.

Now that we have the main activity done and the tab fragment all set up, the last thing we need is to create some sort of layout for our individual tab views. This will be the view that is placed inside of the TabWidget on our tabs fragment layout. These views will have the title of the tab and they’ll be what the user actually interacts with in order to switch tabs.

The layout XML for our simple tab view looks like the following:


<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:orientation="vertical" >

<TextView
 android:id="@+id/tabTitle"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceLarge" />

</LinearLayout>

And that’s it for layouts! Just these three simple files. Now, we need to fill out our classes!

The Classes

If we start from the beginning with the classes, the first (and only) class that gets generated for you is the MainActivity class. If you left it untouched (hopefully you did since there was no indication to change it yet!) then you should have a class that looks like:

Tab Fragment Tutorial - Initial Main Activity Class

The default MainActivity class that gets generated after we complete the steps in the wizard.

In order to make this example work, we barely even need to modify this class at all. You’ll notice our MainActivity extends the Activity class. Because we’re going to be using fragments in our application, we need to modify this class to extend the FragmentActivity. In this entire example, I opted to use the Android v4 Support Library. Thus, in order to make this example work, please ensure you’re using FragmentActivity from the package “android.support.v4.app.FragmentActivity“.

Once you’ve made this replacement (“Activity” for “FragmentActivity”) we’re all done in this class. Great stuff, right? Let’s move on.

We’re going to want to make a class that defines what a tab is. In order to make some nice re-usable code that you can extend, I decided to make a base class that defines minimum tab functionality (at least in my opinion). Feel free to extend upon this class later should your needs exceed what I’m offering in this tutorial.

The base TabDefinition class will:

  • Take in the ID of the view where the tab’s content will be put. In our example, this will be the ID for tab1 or tab2’s FrameLayout.
  • Provide a unique identifier to look up the tab.
  • Be required to provide the Fragment instance that will be used when the tab is activated.
  • Be required to create the tab view that the user will interact with in order to activate the tab.

Let’s add a new class called “TabDefinition” to the package “com.devleader.tab_fragment_tutorial”, just like where our MainActivity class is. The code for the TabDefinition class is as follows:


package com.devleader.tab_fragment_tutorial;

import java.util.UUID;

import android.support.v4.app.Fragment;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;

/**
 * A class that defines a UI tab.
 */
public abstract class TabDefinition {
 //
 // Fields
 //
 private final int _tabContentViewId;
 private final String _tabUuid;

 //
 // Constructors
 //
 /**
 * The constructor for {@link TabDefinition}.
 * @param tabContentViewId The layout ID of the contents to use when the tab is active.
 */
 public TabDefinition(int tabContentViewId) {
   _tabContentViewId = tabContentViewId;
   _tabUuid = UUID.randomUUID().toString();
 }

 //
 // Exposed Members
 //
 /**
 * Gets the ID of the tab's content {@link View}.
 * @return The ID of the tab's content {@link View}.
 */
 public int getTabContentViewId() {
   return _tabContentViewId;
 }

 /**
 * Gets the unique identifier for the tab.
 * @return The unique identifier for the tab.
 */
 public String getId() {
   return _tabUuid;
 }

 /**
 * Gets the {@link Fragment} to use for the tab.
 * @return The {@link Fragment} to use for the tab.
 */
 public abstract Fragment getFragment();

 /**
 * Called when creating the {@link View} for the tab control.
 * @param inflater The {@link LayoutInflater} used to create {@link View}s.
 * @param tabsView The {@link View} that holds the tab {@link View}s.
 * @return The tab {@link View} that will be placed into the tabs {@link ViewGroup}.
 */
 public abstract View createTabView(LayoutInflater inflater, ViewGroup tabsView);
}

Now that we have the bare-minimum definition of what a tab in our UI looks like, let’s make it even easier to work with. In my example, I just want to have my tabs have a TextView to display a title–They’re really simple. I figured I’d make a child class of TabDefinition called SimpleTabDefinition. The goal of SimpleTabDefinition is really just to provide a class that takes the minimum amount of information to get a title put onto a custom view.

Please keep in mind that there are many ways to accomplish what I’m trying to illustrate here, but I personally felt having a base class with a more specific child class would help illustrate my point. You could even put in a second type of child class that would make a graphical tab that shows a graphical resource instead of a string resource. Tons of options!

Let’s add another new class called “SimpleTabDefinition” to the package “com.devleader.tab_fragment_tutorial”. The code for SimpleTabDefinition is as follows:


package com.devleader.tab_fragment_tutorial;

import android.support.v4.app.Fragment;
import android.view.Gravity;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.LinearLayout;
import android.widget.TextView;
import android.widget.LinearLayout.LayoutParams;

/**
 * A class that defines a simple tab.
 */
public class SimpleTabDefinition extends TabDefinition {
  //
  // Fields
  //
  private final int _tabTitleResourceId;
  private final int _tabTitleViewId;
  private final int _tabLayoutId;
  private final Fragment _fragment;

  //
  // Constructors
  //
  /**
  * The constructor for {@link SimpleTabDefinition}.
  * @param tabContentViewId The layout ID of the contents to use when the tab is active.
  * @param tabLayoutId The ID of the layout to use when inflating the tab {@link View}.
  * @param tabTitleResourceId The string resource ID for the title of the tab.
  * @param tabTitleViewId The layout ID for the title of the tab.
  * @param fragment The {@link Fragment} used when the tab is active.
  */
  public SimpleTabDefinition(int tabContentViewId, int tabLayoutId, int tabTitleResourceId, int tabTitleViewId, Fragment fragment) {
    super(tabContentViewId);

    _tabLayoutId = tabLayoutId;
    _tabTitleResourceId = tabTitleResourceId;
    _tabTitleViewId = tabTitleViewId;
    _fragment = fragment;
  }

  //
  // Exposed Members
  //
  @Override
  public Fragment getFragment() {
    return _fragment;
  }

  @Override
  public View createTabView(LayoutInflater inflater, ViewGroup tabsView) {
    // we need to inflate the view based on the layout id specified when
    // this instance was created.
    View indicator = inflater.inflate(
      _tabLayoutId,
      tabsView,
      false);

    // set up the title of the tab. this will populate the text with the
    // string defined by the resource passed in when this instance was
    // created. the text will also be centered within the title control.
    TextView titleView = (TextView)indicator.findViewById(_tabTitleViewId);
    titleView.setText(_tabTitleResourceId);
    titleView.setGravity(Gravity.CENTER);

    // ensure the control we're inflating is layed out properly. this will
    // cause our tab titles to be placed evenly weighted across the top.
    LinearLayout.LayoutParams layoutParams = new LinearLayout.LayoutParams(
      LayoutParams.WRAP_CONTENT,
      LayoutParams.WRAP_CONTENT);
    layoutParams.weight = 1;
    indicator.setLayoutParams(layoutParams);

    return indicator;
  }
}

Awesome stuff. Now we can define tabs easily in our application. We just have one more class left, I promise! In the following section, I’ll re-iterate over everything, so if you’re feeling a bit lost… Just hang in there.

The one part we’re actually missing is the fragment that will manage all of our tabs. We created the layout for it already, which has a TabHost, a TabWidget (to contain the clickable tab views), and some FrameLayouts (that contain the content we show when we press a tab). Now we just need to actually attach some code to it!

The TabsFragment class that we’re going to want to add to the package “com.devleader.tab_fragment_tutorial” is responsible for a few things. First, we’re going to be defining our tabs in here. This class will be responsible for taking those tab definitions and creating tabs that get activated via the TabHost. As a result, this fragment class is going to have to implement the OnTabChangedListener interface. This will add a method where we handle switching the fragment shown to match the fragment for the contents of the tab that was pressed.

The code for our TabsFragment class looks like the following:

package com.devleader.tab_fragment_tutorial;

import android.os.Bundle;
import android.support.v4.app.Fragment;
import android.support.v4.app.FragmentManager;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.TabHost;
import android.widget.TabHost.OnTabChangeListener;
import android.widget.TabHost.TabSpec;

/**
 * A {@link Fragment} used to switch between tabs.
 */
public class TabsFragment extends Fragment implements OnTabChangeListener {
  //
  // Constants
  //
  private final TabDefinition[] TAB_DEFINITIONS = new TabDefinition[] {
    new SimpleTabDefinition(R.id.tab1, R.layout.simple_tab, R.string.tab_title_1, R.id.tabTitle, new Fragment()),
    new SimpleTabDefinition(R.id.tab2, R.layout.simple_tab, R.string.tab_title_2, R.id.tabTitle, new Fragment()),
   };

  //
  // Fields
  //
  private View _viewRoot;
  private TabHost _tabHost;

  //
  // Exposed Members
  //
  @Override
  public void onTabChanged(String tabId) {
    for (TabDefinition tab : TAB_DEFINITIONS) {
      if (tabId != tab.getId()) {
        continue;
      }

      updateTab(tabId, tab.getFragment(), tab.getTabContentViewId());
      return;
    }

    throw new IllegalArgumentException("The specified tab id '" + tabId + "' does not exist.");
  }

  @Override
  public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState) {
    _viewRoot = inflater.inflate(R.layout.fragment_tabs, null);

    _tabHost = (TabHost)_viewRoot.findViewById(android.R.id.tabhost);
    _tabHost.setup();

    for (TabDefinition tab : TAB_DEFINITIONS) {
      _tabHost.addTab(createTab(inflater, _tabHost, _viewRoot, tab));
    }

    return _viewRoot;
  }

  @Override
  public void onActivityCreated(Bundle savedInstanceState) {
    super.onActivityCreated(savedInstanceState);
    setRetainInstance(true);

    _tabHost.setOnTabChangedListener(this);

    if (TAB_DEFINITIONS.length > 0) {
      onTabChanged(TAB_DEFINITIONS[0].getId());
    }
  }

  //
  // Internal Members
  //
  /**
  * Creates a {@link TabSpec} based on the specified parameters.
  * @param inflater The {@link LayoutInflater} responsible for creating {@link View}s.
  * @param tabHost The {@link TabHost} used to create new {@link TabSpec}s.
  * @param root The root {@link View} for the {@link Fragment}.
  * @param tabDefinition The {@link TabDefinition} that defines what the tab will look and act like.
  * @return A new {@link TabSpec} instance.
  */
  private TabSpec createTab(LayoutInflater inflater, TabHost tabHost, View root, TabDefinition tabDefinition) {
    ViewGroup tabsView = (ViewGroup)root.findViewById(android.R.id.tabs);
    View tabView = tabDefinition.createTabView(inflater, tabsView);

    TabSpec tabSpec = tabHost.newTabSpec(tabDefinition.getId());
    tabSpec.setIndicator(tabView);
    tabSpec.setContent(tabDefinition.getTabContentViewId());
    return tabSpec;
  }

  /**
  * Called when switching between tabs.
  * @param tabId The unique identifier for the tab.
  * @param fragment The {@link Fragment} to swap in for the tab.
  * @param containerId The layout ID for the {@link View} that houses the tab's content.
  */
  private void updateTab(String tabId, Fragment fragment, int containerId) {
    final FragmentManager manager = getFragmentManager();
    if (manager.findFragmentByTag(tabId) == null) {
      manager.beginTransaction()
        .replace(containerId, fragment, tabId)
        .commit();
    }
  }
}

And that’s it! Just four classes in total, and one of them (MainActivity) was almost a freebee!

Putting It All Together

Let’s recap on all of the various pieces that we’ve seen in this example. First, we started with the various layouts that we’d need. Our one and only activity is pretty bare bones. It’s going to contain our tabs fragment view. The tabs fragment view is responsible for containing the individual tabs a user clicks on as well as the content that gets displayed for each tab. We also added a layout for really simplistic tab views that only really contain a TextView that shows the tab’s title.

From there, we were able to look at the classes that would back up the views. To use our fragment implementation, we only had to modify our parent class of our only activity. I opted to create some classes that define tab functionality to make extending the UI a bit easier, and adding additional child classes that fit in this pattern is simple. The TabsFragment class was the most complicated part of our implementation, and truth be told, that’s where most of the logic resides. This class was responsible for defining the tabs we wanted to show, and what fragments we would swap in when each tab was clicked.

In order to extend this even more, the things you’ll want to consider are:

  • Defining your own type of tab definition classes. Maybe you want to look at graphical tabs, or something more complicated than just a title.
  • Implementing your own fragment classes that you display when your tabs are clicked. In the example, the contents of the tabs are empty! This is definitely something you’ll want to extend upon.
  • Adding more tabs! Maybe you need three or four tabs instead of two.

Summary

Fragments in Android really aren’t all that complicated. As a new Android developer or transitioning from the pre-API level 11 days, they might seem a bit odd. Hopefully after you try out this example they’re a lot more clear. Hopefully by following along with this tutorial you found that you were easily able to set up a tabbed user interface in Android and get a basic understanding for how fragments work.

Source and Downloads

I like being able to provide the source in as many formats as possible… so here we go:

Update: The actual application is available on the Google Play store.


Dynamic Programming with Python and C#

Dynamic Coding with C# and Python

Dynamic Code: Background

Previously, I was expressing how excited I was when I discovered Python, C#, and Visual Studio integration. I wanted to save a couple examples regarding dynamic code for a follow up article… and here it is! (And yes… there is code you can copy and paste or download).

What does it mean to be dynamic? As with most things, wikipedia provides a great start. Essentially, much of the work done for type checking and signatures is performed at runtime for a dynamic language. This could mean that you can write code that calls a non-existent method and you wont get any compilation errors. However, once execution hits that line of code, you might get an exception thrown. This Stack Overflow post’s top answer does a great job of explaining it as well, so I’d recommend checking that out if you need a bit more clarification. So we have statically bound and dynamic languages. Great stuff!

So does that mean Python is dynamic? What about C#?

Well Python is certainly dynamic. The code is interpreted and functions and types are verified at run time. You won’t know about type exceptions or missing method exceptions until you go to execute the code. For what it’s worth, this isn’t to be confused with a loosely typed language. Ol’ faithful Stack Overflow has another great answer about this. The type of the variable is determined at runtime, but the variable type doesn’t magically change. If you set a variable to be an integer, it will be an integer. If you set it immediately after to be a string, it will be a string. (Dynamic, but strongly typed!)

As for C#, in C# 4 the dynamic keyword was introduced. By using the dynamic keyword, you can essentially get similar behaviour to Python. If you declare a variable of type dynamic, it will take on the type of whatever you assign to it. If I assign a string value to my dynamic variable, it will be a string. I can’t perform operations like pre/post increment (++) on the variable when it’s been assigned a string value without getting an exception. If I assign an integer value immediately after having assigned a string value, my variable will take on the integer type and my numeric operators become available.

Where does this get us with C# and Python working together then?

Example 1: A Simple Class

After trying to get some functions to execute between C# and Python, I thought I needed to take it to the next level. I know I can declare classes in Python, but how does that look when I want to access it from C#? Am I limited to only calling functions from Python with no concept of classes?

The answer to the last question is no. Most definitely not. You can do some pretty awesome things with IronPython. In this example, I wanted to show how I can instantiate an instance of a class defined within a Python script from C#. This script doesn’t have to be created in code (you can use an external file), so if you need more clarification on this check out my last Python/C# posting, but I chose to do it this way to have all the code in one spot. I figured it might be easier to show for an example.

We’ll be defining a class in Python called “MyClass” (I know, I’m not very creative, am I?). It’s going to have a single method on it called “go” that will take one input parameter and print it to the console. It’s also going to return the input string so that we can consume it in C# and use it to validate that things are actually going as planned. Here’s the code:

using System;
using System.Collections.Generic;
using System.Text;
using Microsoft.Scripting.Hosting;

using IronPython.Hosting;

namespace DynamicScript
{
    internal class Program
    {
        private static void Main(string[] args)
        {
            Console.WriteLine("Enter the text you would like the script to print!");
            var input = Console.ReadLine();

            var script =
                "class MyClass:\r\n" +
                "    def __init__(self):\r\n" +
                "        pass\r\n" +
                "    def go(self, input):\r\n" +
                "        print('From dynamic python: ' + input)\r\n" +
                "        return input";

            try
            {
                var engine = Python.CreateEngine();
                var scope = engine.CreateScope();
                var ops = engine.Operations;

                engine.Execute(script, scope);
                var pythonType = scope.GetVariable("MyClass");
                dynamic instance = ops.CreateInstance(pythonType);
                var value = instance.go(input);

                if (!input.Equals(value))
                {
                    throw new InvalidOperationException("Odd... The return value wasn't the same as what we input!");
                }
            }
            catch (Exception ex)
            {
                Console.WriteLine("Oops! There was an exception while running the script: " + ex.Message);
            }

            Console.WriteLine("Press enter to exit...");
            Console.ReadLine();
        }
    }
}

Not too bad, right? The first block of code just takes some user input. It’s what we’re going to have our Python script output to the console. The next chunk of code is our Python script declaration. As I said, this script can be loaded from an external file and doesn’t necessarily have to exist entirely within our C# code files.

Within our try block, we’re going to setup our Python engine and “execute” our script. From there, we can ask Python for the type definition of “MyClass” and then ask the engine to create a new instance of it. Here’s where the magic happens though! How can we declare our variable type in C# if Python actually has the variable declaration? Well, we don’t have to worry about it! If we make it the dynamic type, then our variable will take on whatever type is assigned to it. In this case, it will be of type “MyClass”.

Afterwards, I use the return value from calling “go” so that we can verify the variable we passed in is the same as what we got back out… and it definitely is! Our C# string was passed into a Python function on a custom Python class and spat back out to C# just as it went in. How cool is that?

Some food for thought:

  • What happens if we change the C# code to call “go1” instead of “go”? Do we expect it to work? If it’s not supposed to work, will it fail at compile time or runtime?
  • Notice how our Python method “go” doesn’t have any type parameters specified for the argument “input”? How and why does all of this work then?!

Example 2: Dynamically Adding Properties

I was pretty excited after getting the first example working. This meant I’d be able to create my own types in Python and then leverage them directly in C#. Pretty fancy stuff. I didn’t want to stop there though. The dynamic keyword is still new to me, and so is integrating Python and C#. What more could I do?

Well, I remembered something from my earlier Python days about dynamically modifying types at run-time. To give you an example, in C# if I declare a class with method X and property Y, instances of this class are always going to have method X and property Y. In Python, I have the ability to dynamically add a property to my class. This means that if I create a Python class that has method X but is missing property Y, at runtime I can go right ahead and add property Y. That’s some pretty powerful stuff right there. Now I don’t know of any situations off the top of my head where this would be really beneficial, but the fact that it’s doable had me really interested.

So if Python lets me modify methods and properties available to instances of my type at runtime, how does C# handle this? Does the dynamic keyword support this kind of stuff?

You bet. Here’s the code for my sample application:

using System;
using System.Collections.Generic;
using System.Text;

using Microsoft.CSharp.RuntimeBinder;

using IronPython.Hosting;

namespace DynamicClass
{
    internal class Program
    {
        private static void Main(string[] args)
        {
            Console.WriteLine("Press enter to read the value of 'MyProperty' from a Python object before we actually add the dynamic property.");
            Console.ReadLine();

            // this script was taken from this blog post:
            // http://znasibov.info/blog/html/2010/03/10/python-classes-dynamic-properties.html
            var script =
                "class Properties(object):\r\n" +
                "    def add_property(self, name, value):\r\n" +
                "        # create local fget and fset functions\r\n" +
                "        fget = lambda self: self._get_property(name)\r\n" +
                "        fset = lambda self, value: self._set_property(name, value)\r\n" +
                "\r\n" +
                "        # add property to self\r\n" +
                "        setattr(self.__class__, name, property(fget, fset))\r\n" +
                "        # add corresponding local variable\r\n" +
                "        setattr(self, '_' + name, value)\r\n" +
                "\r\n" +
                "    def _set_property(self, name, value):\r\n" +
                "        setattr(self, '_' + name, value)\r\n" +
                "\r\n" +
                "    def _get_property(self, name):\r\n" +
                "        return getattr(self, '_' + name)\r\n";

            try
            {
                var engine = Python.CreateEngine();
                var scope = engine.CreateScope();
                var ops = engine.Operations;

                engine.Execute(script, scope);
                var pythonType = scope.GetVariable("Properties");
                dynamic instance = ops.CreateInstance(pythonType);

                try
                {
                    Console.WriteLine(instance.MyProperty);
                    throw new InvalidOperationException("This class doesn't have the property we want, so this should be impossible!");
                }
                catch (RuntimeBinderException)
                {
                    Console.WriteLine("We got the exception as expected!");
                }

                Console.WriteLine();
                Console.WriteLine("Press enter to add the property 'MyProperty' to our Python object and then try to read the value.");
                Console.ReadLine();

                instance.add_property("MyProperty", "Expected value of MyProperty!");
                Console.WriteLine(instance.MyProperty);
            }
            catch (Exception ex)
            {
                Console.WriteLine("Oops! There was an exception while running the script: " + ex.Message);
            }

            Console.WriteLine("Press enter to exit...");
            Console.ReadLine();
        }
    }
}

Let’s start by comparing this to the first example, because some parts of the code are similar. We start off my telling  the user what’s going to happen and wait for them to press enter. Nothing special here. Next, we declare our Python script (again, you can have this as an external file) which I pulled form this blog. It was one of the first hits when searching for dynamically adding properties to classes in Python, and despite having limited Python knowledge, it worked exactly as I had hoped. So thank you, Zaur Nasibov.

Inside our try block, we have the Python engine creation just like our first example. We execute our script right after too and create an instance of our type defined in Python. Again, this is all just like the first example so far. At this point, we have a reference in C# to a type declared in Python called “Properties”. I then try to print to the console the value stored inside my instances property called “MyProperty”. If you were paying attention to what’s written in the code, you’ll notice we don’t have a property called “MyProperty”! Doh! Obviously that’s going to throw an exception, so I show that in the code as well.

So where does that leave us then? Well, let’s add the property “MyProperty” ourselves! Once we add it, we should be able to ask our C# instance for the value of “MyProperty”. And… voila!

Some food for thought:

  • When we added our property in Python, we never specified a type. What would happen if we tried to increment “MyProperty” after we added it? What would happen if we tried to assign an integer value of 4 to “MyProperty”?
  • When might it be useful to have types in C# dynamically get new methods or properties?

Summary

With this post, we’re still just scratching the surface of what’s doable when integrating Python and C#. Historically, these languages have been viewed as very different where C# is statically bound and Python is a dynamic language. However, it’s pretty clear with a bit of IronPython magic that we can quite easily marry the two languages together. Using the “dynamic” keyword within C# really lets us get away with a lot!

Source code for these projects is available at the following locations:


Python, Visual Studio, and C#… So. Sweet.

Python, Visual Studio, and C#

Python & C# – Background

Let’s clear the air. Using Python and C# together isn’t anything new. If you’ve used one of these languages and at least heard of the other, then you’ve probably heard of IronPython. IronPython lets you use both C# and Python together. Pretty legit. If you haven’t tried it out yet, hopefully your brain is starting to whir and fizzle thinking about the possibilities.

My development experiences is primarily in C# and before that it was VB .NET (So I’m pretty attached to the whole .NET framework… We’re basically best friends at this point). However, pretty early in my career (my first co-op at Engenuity Corporation, really) I was introduced to Python. I had never really used a dynamic or implicitly typed language, so it was quite an adventure and learning experience.

Unfortunately, aside from my time at EngCorp, I hadn’t really had a use to continue on with Python development. Lately, I’ve had a spark of curiosity. I’m comfortable with C#, sure, but is that enough? There’s lots of great programming languages out there! It’s hard for me to break out of my comfort zone though. I’m used to C# and the awesomeness of Visual Studio, so how could I ever break free from these two things?

Well… I don’t have to yet.

Python Tools for Visual Studio

This was a nice little treasure to stumble upon:

But I didn’t really know what it was all about. I had heard of IronPython, and I knew I could use Python with C# together, so what exactly is “Python Tools“?

After I watched the video that the Visual Studio team tweeted out, I was captivated. Did this mean I could revisit python without having to leave the comfort of my favourite IDE? You bet. First thing I did after watching this video (and yes, I somehow managed to hold back the excitement and wait until the video was done) was fire up Visual Studio. I run with Visual Studio 2012 (the dark theme too) so in my screenshots that’s what you’ll be seeing. Once Visual Studio has loaded:

  • Go to the “Tools” menu at the top of the IDE.
  • Select the “Extensions and Updates…” menu item.
  • You should see the “Extensions and Updates” dialog window now.

You’re going to want to search for “Python Tools” after you’ve selected the “Online” option on the left side of the dialog. It should look something like this:

Python Tools - Visual Studio Extensions and Updates

Installing Python Tools for Visual Studio is pretty easy. Make sure you’re searching online and search for “Python Tools”.

After you’ve followed all of the installation instructions, it’s time to make sure the installation worked. Simple enough!

  • Go to the “File” menu at the top of the IDE.
  • Go to the “New” menu item.
  • Select the “Project…” menu item.
  • You should now see the “New Project” dialog

To ensure Python is now available, try seeing if you have Python project templates available:

Verify Python in Visual Studio

To verify that Python is now available in Visual Studio, check under the installed templates. It should be under “Other Languages”.

Hopefully it’s there. If not, or if you have any other install questions, I highly recommend you refer to the official site and follow along there. This is what got me up and running with my current machine, but if your setup is slightly different you should definitely follow their instructions. That’s it! You have Python Tools! But what else would make your C#, Python, and Visual Studio experience EVEN BETTER? The answer to that question is of course IronPython. Head on over to this page and get yourself setup with the latest cut of IronPython. Once that’s setup, you should have all the fancy tools you need!

Print to Console – Your First C#/Python Application

I’m sure you feel the excitement building. I’ll start by saying the code is all available online, so even though I’ll have snippets and pictures here, you can download all of the source and follow along that way if you want. Otherwise, I’ll do my best to walk you through how I set things up! This application is going to be pretty simple. It’s a tiny bit bigger than a “Hello World” application, with the difference being that you tell Python what you want to print to the console. Easy-peasy, right?

First up, let’s make a new C# console project.

  • From Visual Studio, go to the “File” menu at the top of the IDE.
  • Select the “New” menu item.
  • Select the “Project” menu item.
  • You should see the “New Project” dialog.
  • Select the “Visual C#” template on the left of the dialog.
  • Select “Console Application”.
  • In the framework dropdown at the top of the dialog, select .NET 4.5
  • Fill in the details for where you want to save your project.
  • Press “OK”! And we’re off!

Now that you have a console application you’re going to want to add in all the dependencies we need. If you look at the project in your solution explorer, you’re going to want to add the following dependencies:

IronPython Dependencies in Visual Studio

Add the IronPython and Microsoft.Scripting dependencies through the solution explorer in Visual Studio.

If you’re having trouble getting the dependencies set up, remember you can always download the source projects I’ve put together. Now that you have all the necessary dependencies, here’s the source for our little application:

using System;
using System.Collections.Generic;
using System.Text;
using System.Diagnostics;

using IronPython.Hosting;

namespace PrintToConsole
{
    internal class Program
    {
        private static void Main()
        {
            Console.WriteLine("What would you like to print from python?");
            var input = Console.ReadLine();

            var py = Python.CreateEngine();
            try
            {
                py.Execute("print('From Python: " + input + "')");
            }
            catch (Exception ex)
            {
                Console.WriteLine("Oops! We couldn't print your message because of an exception: " + ex.Message);
            }

            Console.WriteLine("Press enter to exit...");
            Console.ReadLine();
        }
    }
}

Let’s walk through what this code is doing:

  • First we’re getting input from the user. This is some pretty basic C# stuff, but we’re simply printing a message to the console and taking in the text the user enters before they press enter.
  • Next, we create a Python engine instance. This is the class that’s going to be responsible for executing python for us!
  • The code that exists within the try block tells our engine instance to execute some python code.
    • The print() method that you see being passed to the engine is the syntax since Python 3.0.
    • The parameter that we’re passing into the print() method is a python string… but we’re sticking our user input inside of it as well!
    • It’s also important to note that we’re building up a C# string that contains all of the Python code that will be executed and passing that to the engine.
  • I have a catch block here to catch any unexpected problems. Can you think of any?
    • What happens if your user input some text with a single quote?
  • The last part of the application just asks the user to press enter when they are all done.

Simple! There’s your first C# + Python application! You can see the source for the whole thing over here.

Run External Script

So this is great: you can now run some python code from within C#. Totally awesome. But what about all those python scripts you have written up already? Do you need to start copying and pasting them into C# code files and start to try and format them nicely? The answer is no, thankfully! Let’s start by following the exact same steps as outlined in the first example. You should be able to set up a new .NET 4.5 C# console project and add in all the same dependencies. Once you have that put together, you can use the following source code:

using System;
using System.Collections.Generic;
using System.Text;

using IronPython.Hosting;

namespace RunExternalScript
{
    internal class Program
    {
        private static void Main(string[] args)
        {
            Console.WriteLine("Press enter to execute the python script!");
            Console.ReadLine();

            var py = Python.CreateEngine();
            try
            {
                py.ExecuteFile("script.py");
            }
            catch (Exception ex)
            {
                Console.WriteLine("Oops! We couldn't execute the script because of an exception: " + ex.Message);
            }

            Console.WriteLine("Press enter to exit...");
            Console.ReadLine();
        }
    }
}

This script looks similar, right? Before I explain what it does, let’s add in the Python script that you’ll be executing from this console application.

  • Right click on your project in the solution explorer.
  • Select the “Add” menu item from the context menu.
  • Select the “New Item…” menu item.
  • You should see the “Add New Item” dialog.
  • You’ll want to add a new text file called “script.py”.

It should look a little something like this:

Add new Python script in Visual Studio

In the “Add New Item” dialog, select “Text File” and rename it to “script.py”.

The next really important step is to ensure that this script gets copied to the output directory. To do this, select your newly added script file in the solution explorer and change the “Copy to Output Directory” setting to “Copy Always”. Now when you build your project, you should see your script.py file get copied to the build directory. Woo! You can put any python code you want inside of the script file, but I started with something simple:

print('Look at this python code go!')

Okay, so back to the C# code now. This example looks much like the first example.

  • Wait for the user to press enter before executing the Python script. Just to make sure they’re ready!
  • Create our engine instance, just like in the first example.
  • In the try block, we tell the engine to execute our script file. Because we had the file copy to the output directory, we can just use a relative path to the file here.
  • Again, we’ve wrapped the whole thing inside of a try/catch to ensure any mistakes you have in your python script get caught.
    • Try putting some erroneous Python code in the script file and running. What happens?
  • Finally, make sure the user is content with the output and wait for them to press Enter before exiting.

Look how easy that was! Now you can choose to execute Python code generated in C# OR execute external Python scripts!

Summary

It’s awesome to see that you expressed an interest in trying to marry these two languages together inside of a powerful IDE. We’re only breaking through the surface here, and admittedly I’m still quite new to integrating Python and C# together. I need to re-familiarize myself with Python, but I can already see there is a ton of potential for writing some really cool applications this way.

In the near future, I’ll be discussing how the dynamic keyword in C# can actually allow you to create classes in Python and use them right inside of C#… Dynamically!

Both of these pages were helpful in getting me up and running with C# and Python together:

Source code for these projects is available at the following locations:


API: Don’t Forget About The Non-Public API!

Image courtesy of FreeDigitalPhotos.net

Background

From an object oriented programming perspective, an application programming interface (API) is often referred to as the way other developers can interact with the public members of your class(es) and interface(s). Of course, API can be used to describe how one interacts with a web service (or other types of services), but for this discussion I’m limiting the scope to that of interfaces and classes. Limiting the definition of API to public members (or the equivalent of C#’s “public” in other languages) is omitting one huge part of what it encompasses. The purpose of this post is to clarify, in my opinion, why I think forgetting about the non-public API can lead to bad framework and API designs.

API And The Audience

I’ve written before about what I think makes a good API, and I had some comments on Code Project on the same posting that lead me to this topic: the audience. There’s a lot to consider when you’re writing what many people would consider good, clean code. It’s impossible to please everyone because everyone has some sort of best practice, guideline, or convention that they follow because they believe it’s the best. So, I’m not going to tell you that some way is the best… I just want you to be conscious of your audience so that you can make better decisions.

Okay, okay… So what do I mean by audience? I’m going to generalize your audience (the consumers of your API) into two distinct categories. The first category is the group of developers who will be using references to things that implement your interfaces and your concrete classes. They’ll use the instances of the things you define. For example, let’s consider a something built-in to the .NET framework: the List<T> class. Your first group of API consumers are just going to use instances of this class exactly as provided by the framework. They’ll make new instances of them and pass them around to be used in functions, or make properties that return instances of List<T>, or declare variables of type List<T>, etc… They use it as is, as provided.

The second general group of API consumers are the ones who are going to be extending your interfaces and classes. A great example of this is the EventArgs class. This class is super basic; It doesn’t do anything! Anyone who wants to use the EventArgs class essentially has to make their own class that inherits from EventArgs. Another example of this is the Exception class. Again, this class is built for people to extend it with their own implementations. I suppose both of these examples are pretty primitive because the base classes don’t offer much functionality, but what if your class wanted to let child classes override the default behaviour? I’ll have some more concrete examples of this later on.

Intentions Of The Audience

With these two general types of consumers defined, it’s a bit easier to consider how people may want to use your API differently. The first class of consumer wants to able to easily call your methods that you’ve defined and easily create the objects/interfaces that are core to your API. This means that the input they need to provide should be extremely basic, so using things like built in interfaces, or other classes that you’ve defined that are easy to create. These consumers also want information-rich return values and classes. Why? Because it makes their life easy! If they only need to provide a little bit of information and they get a lot back, they’re able to do a lot more with the data that they have access to. They don’t need to (and they certainly don’t want to) call 10 different things in intricate ways to get a little bit of data back.

The second class of consumer takes the exact opposite perspective. Here’s why. In the first case where the first group of consumers want to pass in only minimal information to methods, the second class of consumer wants lots of information passed in. This class of consumer is required to do some job or return some data, so the more information they are provided the easier it is for them to perform their job. Similarly, they want the return values of methods to be as simplistic as possible. Why? It makes their job easier! If they are responsible for returning some incredibly complex class from a method defined in your interface, and the input to that method is only minimal information, this makes the job of the second class of consumer quite difficult.

The best way to remember these similarities and differences is that the flow of data is opposite depending on what type of API consumer you’re talking about. The first type of consumer wants to provide a little and get a lot, and the second type of consumer wants to get a lot and provide a little. Makes sense right? Everyone wants to do the easy thing.

The take-away here is that depending on who you think your main audience is going to be for your API, it will affect how you structure it. And this is exactly why forgetting about the non-public API can be a huge mistake. Forgetting this part of the API makes the whole thing difficult to extend because your base classes cannot as easily be built on top of. You actually make the lives of the second class of API consumers very difficult if you ignore their needs.

Example: WinForms

If you’ve done desktop application development in C#, you’ve likely used (or at least heard of) WinForms. Some people new to desktop application development might have actually started with Windows Presentation Foundation (WPF), but the same concepts will apply here. In my opinion WinForms is a great example of an API that has both public and non-public components that were designed with both audience types in mind. Let’s start with the first class of API consumers.

If you’ve dabbled in WinForms, you’re likely familiar with the Windows Form Designer offered in Visual Studio. If you are… then congrats! You’re the first class of API consumer that I’ve described. By using the built in classes like Buttons, TextBoxes and Labels, you’re using the out-of-the-box components offered in the framework and consuming the public API offered by these controls. You’ll be using things like the Text property offered on these controls and interacting with them via their events (i.e. hooking onto click events or text changed events). You’ll be using the public API. Nothin’ wrong with that!

//
// MyButton
//
this.MyButton.Location = new System.Drawing.Point(146, 84);
this.MyButton.Name = "MyButton";
this.MyButton.Size = new System.Drawing.Size(75, 23);
this.MyButton.TabIndex = 0;
this.MyButton.Text = "Click Me!";
this.MyButton.UseVisualStyleBackColor = true;
this.MyButton.Click += new System.EventHandler(this.MyButton_Click);

private void MyButton_Click(object sender, EventArgs e)
{
    // do stuff!
}

Now, the creators of WinForms weren’t dummies. They knew that they weren’t going to be able to offer you every possible control you’d ever need. They made the API in WinForms have great support for the non-public members of their base classes! So, what do I mean by that?

Let’s pretend we want to have our own fancy button class. Because our button is fancy, we always want to tell the user just how fancy it is when they click it. Now if the framework you were using had a poorly designed API, you might be forced to code a button from scratch. That would be pretty lame considering the complexity of the built-in controls offered to you already. For this example, you could surely just create one button and hook an event handler onto the click event (using the public API), but what if you wanted to re-use this everywhere throughout your user interface? You’d want your own FancyButton class that has this behaviour built-in so you can easily reuse it. No problem.

private class FancyButton : Button
{
    protected override void OnClick(EventArgs e)
    {
        base.OnClick(e);
        this.Text = "The fancy button was clicked.";
    }
}

The non-public API in WinForms gives you access to built-in behaviour of the base classes. You don’t need to hook onto events to get the job done, you can actually override the OnClick method and prevent the click event from even firing! The focus on the non-public API allows developers to extend the built-in classes without having to design their own from the ground up.

Summary

It takes a lot of practice and experience to be able to write a good API. There’s also plenty of different opinions on what constitutes a well-designed API. In my opinion, you need to give a lot of thought as to how your API will be used. Consider the two general types of API consumers I’ve defined: The consumers that use your API with the public parts of the interfaces and classes you’ve defined, and the consumers that want to extend your defined classes to provide their own related implementations. These two types of consumers will want very different things, and in order to please the second class of consumer, you absolutely cannot forget about the non-public API.

Some food for thought:

  • How can I best guess how developers will use my API?
  • I’m providing base classes with my framework and API. Can people easily extend them through inheritance? Will people want to extend them?
  • What would make my public API easier for other developers to use?
  • What would make my non-public API easier for other developers to build on to my base classes?

  • Subscribe to Blog via Email

    Enter your email address to subscribe to this blog and receive notifications of new posts by email.

  • Nick Cosentino

    Nick Cosentino

    I work as a team lead of software engineering at Magnet Forensics (http://www.magnetforensics.com). I'm into powerlifting, bodybuilding, and blogging about leadership/development topics over at http://www.devleader.ca.

    Verified Services

    View Full Profile →

  • Copyright © 1996-2010 Dev Leader. All rights reserved.
    Jarrah theme by Templates Next | Powered by WordPress